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INTRODUCTION

In a recent paper [1], Deutsch and Morris introduced an abstract approxi­
mation-theoretic concept which they called "simultaneous approximation
and interpolation which is norm-preserving" (SAIN). This concept, which
was motivated by earlier work of Yamabe and Wolibner (see [1] for
references), may be formulated in general normed linear spaces as follows.

DEFINITION. Let X be a normed linear space, M a dense subset of X, and
r a finite dimensional subspace of X*. The triple (X, M, r) has property
(SAIN) if, for every x E X and E > 0, there exists Y E M such that

Ilx - yll < E, Ilxll = IIYII, and y(x) = y(y),

for every y E r.
As it stands this property pertains to constrained dense approximation,

rather than to best approximation. Nevertheless, by restricting our attention
to the case where M is (dense and) convex, we propose to approach the matter
from the latter point of view. To this end, we introduce the (finite codimen­
sional) subspace .Lrex, and consider the best approximation problem
connected with this subspace. In many spaces X of interest, 1.r is a Chebyshev
subspace; however, we need only assume that it has the EF-property of
Morris et al. [2,3]. From this assumption we obtain one of our main results
(Theorem 1) which provides a pair of necessary and sufficient conditions
for (X, M, r) to have property (SAIN).

In the original formulation [1], the subspace r was prescribed by a basis
{Yl ,..., y,,}. In this setting Deutsch and Morris gave the following necessary
condition for property (SAIN) [1, Theorem 2.3].

*Partially supported by the National Science Foundation and the Purdue Research
Foundation.

t Partially supported by NDEA IV.

132
Copyright © 1973 by Academic Press, Inc.
All rights of reproduction in any fonn reserved.



PROPERTY (SAIN) 133

Deutsch-Morris Necessary Condition

The triple (X, M, r) has property (SAIN) only if each Yi attains its norm
solely at points of M, or not'at all.

They also raised the question [1, Remark 2.6] asking when this last property
is also a sufficient condition for property (SAIN). In Theorem 2 below we
resolve this question as follows. Suppose that X is reflexive and rotund. Let
T denote the norm duality map on X. Then for a fixed dense linear subspace
M in X the Deutsch-Morris necessary condition is equivalent to property
(SAIN)jor all rijfT(M) is a linear subspace ojX*. Since Tis easily computed
when X is an D'(p,) space (Lemma 4), this result has an immediate application
to a large number of (SAIN) problems in such spaces. It also leads to a new
characterization of Hilbert spaces in terms of property (SAIN) (Theorem 3).

This paper consists of two main sections. The first presents several necessary
and/or sufficient conditions for property (SAIN) in general normed spaces,
some of which were mentioned above. We feel that these conditions establish
a unified geometrical approach to property (SAIN). The second section
contains numerous examples and applications of the theory, primarily for
the case where X = U{j.t) (I ~ p < 00, JL a positive measure), which we
feel illustrate the efficacy of the approach developed in Section 1.

1. PROPERTY (SAIN) IN ABSTRACT NORMED SPACES

Throughout this section we use the following notation: X is a real normed
linear space and 8 is its zero vector; M is a dense convex subset of X, x* is
the continuous dual space of X, r is a finite dimensional subspace of X*;
VeX) and SeX) are respectively the closed unit ball and its boundary in X,
and L = .l.r is the annihilator of r in X. For each x E X, the set
PL(X) = {y E L : II x - y II = dist(x, L)} is the set of best approximations to
xjrom L; for some x it may be void. The mapping PL from X into the closed
bounded convex subsets of L is the metric projection of X on L. We write
x .1 L if e EPL(X), and say that the set L6 = {x EX: x 1. L} is the metric
complement of L in X. It is easily verified that the sets x - PL(X) and
II x II SeX) n (x + L) are the same whenever x E L6; for such x we denote
this set by G", .

LEMMA 1. The triple (X, M, T) has property (SAIN) iff whenever x E L6
we have

G", = MnG",.

(We note that this condition entails 8 E M, by definition of property
(SAIN) and the fact that Ge = {8}.)
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Proof Suppose that (X, M, r) has property (SAIN) and that y E Goo •
Then y = x - Z for some Z ELand II y II = II x II. Given E > 0, we want
an mE M n Go; such that II y - mil < E. But property (SAIN) implies the
existence of m E M with II y - mil < E, II m II = II y II, and y - m = Zl E L.
However, this m is actually in Go;, since m = y - Zl = X - Z - Zl EX + L.

Conversely, assume the stated condition on Go; for x E Le; let y E X and
E > O. We distinguish two cases.

Case a. y ELe. By hypothesis, there exists m E M n Gy with II y - mil < E.

By definition of Gy we also have II m II = II y II and m E y + L.

Case b. y rf: Le. In this case, dist( y, L) < II y II, hence y + L intersects
II y II O(X). Since codim L < 00, the Singer-Yamabe theorem (e.g., [1,
Theorem 1.1]) implies M n (y + L) is dense in y + L. In particular, there
exists mE M n (y + L) such that II y - mil < E and II m II < II y II. The
proof is now completed by an appeal to [1, Lemma 2.3].

Remark. It is possible to prove Lemma 1 by carefully following the
argument used to establish the theorem ofMcLaughlin and Zaretzki [7, p. 56].
We prefer the proof given above, however, because of its simplicity and
brevity. The brevity was made possible by an appropriate utilization of the
lemmas of [1, pp. 357-358].

We note that Go; C Le, that the norm is constant on Goo, and that Go; is
closed and convex. The definitions of Goo and PL(x) do not involve the dense
set M. Thus, Lemma 1 provides our first geometric characterization of
property (SAIN) by showing this property to be equivalent to the density
of M in certain convex sets defined by L. We should also point out that the
sets Goo, although contained in the spheres II x II S(X), are generally not faces
of the corresponding balls, because they may fail to be extremal subsets of
these balls.

COROLLARY 1. The condition Le C M always implies property (SAIN).

As we show later (Theorem 1), the condition of Corollary 1 may in fact be
equivalent to property (SAIN), given additional information about Land M.
Meanwhile, the next result shows that a weakened form of this condition is
always necessary for property (SAIN).

LEMMA 2. The following two conditions are equivalent to each other and
are implied by property (SAIN):

(a) Le = M n Le ;

(b) S(X) n Le = M n S(X) n Le.
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Further, these conditions imply property (SAIN) in the special case where
dim r = 1.

Proof We omit the (routine) proof that (a) and (b) are necessary for
property (SAIN). That (a) and (b) are equivalent follows from the fact that
Le is closed under scalar multiplication. Finally, suppose that r = span{y},
that (b) holds, that x 1- L, that II x II = 1, that y E G", , and that E in (0, 1)
is given. Then (b) implies the existence of mE M Il SeX) n Le such that
II m - y II < E. We show that m - y ELand conclude by use of Lemma 1.
We may assume that II y II = 1. Now,

1 = II y II = dist(y, L) = sup{f(y) :fE S(F)},

and similarly for m. Thus I y(m)I = I y( y)1 = 1, and since

1 > E > II m - y II ~ I y(m - Y)I,

we must have y(m) = y(y) or m - y E L. Q.E.D.

We remark that it is an open question whether the above conditions (a)
and (b) are equivalent to property (SAIN) when dim r > 1.

Before stating the next lemma, which provides one more necessary con­
dition of geometrical type for property (SAIN), we make the following
definitions.

DEFINITION. Let x E X, x 'id9. The conjugate set for x is

o(x) = {fES(X*) :f(x) = II xII}.

The contact set for x is F", = II x II SeX) n n{f-I(11 x II) :fE o(x)}.
The conjugate set for x, being just the subdifferential of the norm at x, is

always w*-compact, convex, and nonempty. The contact set for x, being the
intersection of a multiple of the unit ball of X and its hyperplanes of support
at x, is a closed, convex and nonempty face of II x II U(X). Its definition is
evidently independent of the subspaces Land M. However, we note that
x 1- L -¢> o(x) n r =1= 0 -¢> F", C Le for any subspace L = .Lr, and that
if x 1- Land o(x) C r (which would be the case if x were a smooth point
of X) then G", CF",.

LEMMA 3. The following condition is implied by property (SAIN): whenever
o(x) C r we have

F", = M n F",.

The proof is similar to previous proofs and is, therefore, omitted.
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The next result shows that for important special classes of subspaces r
and convex sets M, a strong form of the Deutsch-Morris necessary condition
(cf. Introduction) and the sufficient condition of Corollary 1 are each
equivalent to property (SAIN).

DEFINITION. L is an EF-subspace of X if, for every x E X, the set PL(x)
is nonempty and finite dimensional. M is affine if u, v E M implies
tu + (l - t) V E M for all real t.

The EF-subspaces played a role in [3] and were formally defined by Morris
in [2, p. 800].

THEOREM 1. Suppose that L is an EF-subspace of X and that M is (dense
and) affine. Then the following statements are equivalent:

(a) (X, M. r) has property (SAIN);

(b) each nonzero y E r attains its norm solely on M, or not at all;

(c) D::JC M.

Proof It is clear that conditions (b) and (c) are equivalent for any L.
We already know (Corollary 1) that (c) => (a). We now complete the proof
by showing (a) => (c). Let x E DFl. According to Lemma 1, M n G", is dense
in G",. Since M is affine it follows that M n aft' G", is dense in aft' G"" where
"aft''' means "affine hull of." But aft' G", is a finite dimensional linear variety
and M n aft' G", is a linear subvariety. It follows that the two are equal, that
is, x E G", C aft' G", C M. Q.E.D.

We might note that the conditions of Theorem 1 actually imply that M
must be a linear subspace of X, since, as was noted in Lemma 1, property
(SAIN) implies e E M.

DEFINITION. Let X be a normed linear space. The norm duality map Tis
the point-to-set mapping of X into the w*-compact convex subsets of X*
given by

T(e) =e,

T(x) = II x II 8(x), if x =1= e.

This mapping has been studied by Browder [4] and Cudia [5]. We note
that, for x =1= e, T(x) is a singleton exactly when x is a smooth point of X
(written x E sm(X)), and that the sets T(x), T( y) are disjoint for every x, y E X
exactly when X is rotund. Further, T(X) = x* exactly when X is reflexive,
although T(X) is dense in x* in any case when X is complete. In particular,
when X is reflexive, rotund, and smooth, then T is a bijection from X to X*.
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COROLLARY 2. Suppose that T C T(M) and that S(T) C sm(X*). Then
(X, M, T) has property (SAIN).

Proof We show that Le eM. Let x E Le. Then there is fEr n T(x),
hence f E T(M). It follows that x E M, for otherwise f would attain its norm
nonuniquely and so would not be a smooth point of X*.

We recall [1] that property (SAIN) was originally formulated in terms of
a basis {Yl ,... , Yn} for T. Deutsch and Morris gave a necessary condition
(cf. Introduction) for property (SAIN) in this setting, and showed [1,
Corollary 2.3, Theorems 3.2 and 5.1]that in certain special cases this condition
was equivalent to property (SAIN). They also raised the general question of
the sufficiency of this condition. Our next theorem provides an answer to this
question for a special class of spaces X.

THEOREM 2. Suppose that X is reflexive and rotund and that M is a
(dense) linear subspace of X. Then the Deutsch-Morris necessary condition is
always sufficient for (X, M, T) to have property (SAIN) iff T(M) is a linear
subspace of X*.

Proof Suppose that T(M) is a linear subspace of X* and that each Yi
attains its norm (uniquely) on M. Now X* is smooth (because X is reflexive
and rotund) and span{YI ,..., Yn} = T C T(M), since each Yi E T(M). Hence,
property (SAIN) results from Corollary 2. Conversely, suppose that T(M)
is not a linear subspace of X*. Since T(cx) = cT(x) for all real c, there must
exist mi (i = 1,2) in M and Yi E o(mi) such that YI + Y2 attains its norm
(uniquely) at y E X\M. Let T = span{Yi} and L = .LT, so that codim L = 2
in X. We have y E Le and since L is a Chebyshev subspace, condition (c)
of Theorem 1 fails. Thus (X, M, span{Yl' Y2}) does not have property (SAIN),
although the Deutsch-Morris necessary condition is in force. Q.E.D.

When X is a Hilbert space, the norm duality map T is linear; in fact,
modulo the Riesz representation theorem, it is just the identity map. It is,
therefore, an immediate consequence of Theorem 2 that the Deutsch-Morris
necessary condition is always equivalent to property (SAIN) for dense sub­
spaces of Hilbert spaces-a fact already established somewhat differently
in [1, Theorem 3.1]. Our final result ofthis section gives a converse implication
and thereby provides a characterization of Hilbert spaces in terms of property
(SAIN).

THEOREM 3. Let X be reflexive and rotund, and suppose that the Deutsch­
Morris necessary condition is always equivalent to property (SAIN). Then X
is a Hilbert space.
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Proof In view of the preceding remarks, it will suffice to show that if X
is not a Hilbert space then there exists a dense linear subspace Me X for
which T(M) is not a subspace of X*. For we may then apply Theorem 2 to
obtain a contradiction to our stated hypothesis. But if X is not a Hilbert space
then neither is X*. Hence, in x* orthogonality is not left additive
[6, Theorem 2], so there exist functionalsep, Yi, Y2 E x* for which Yi -.l span{ep}
but ')11 + ')12 1- span{ep}. Let H = {x EX: ep(x) = O}. Now ')Ii E T(H) since
')Ii -.l H~ and (H~)~ = H because X is reflexive. The same argument implies
')11 + ')12 rt T(H). Suppose that Yl + Y2 E T(x) for (a unique) x E X\H. Let P
be a one-dimensional subspace of X which is disjoint from both x and H.
Let Q be a dense (and proper) subspace of H which contains the two points
where the Yi attain their norms. Finally let M = P EB Q. Then M = X but
but T(M) is not linear. Q.E.D.

2. ApPLICATIONS OF THE PRECEDING THEORY

We begin by taking X = 1\ and M the subspace of vectors with only
finitely many nonzero coordinates. In [1, Corollary 6.2] it was shown that
(X, M, T) had property (SAIN) provided that the elements of r were
"eventually constant." The present authors conjecture that in fact (X, M, r)
has property (SAIN) for all r C x* = 100• (Note added in proof This con­
jecture has been substantiated. See J. M. Lambert, Simultaneous approxima­
tion and interpolation in fl, Proc. Amer. Math. Soc. 32 (1972), 150-152.)
However, only the following special case of this conjecture has been
established.

COROLLARY 3. If r C Co (the pre-dual of 11) then (fl, M, r) has property
(SAIN).

Proof According to Corollary 1, it is sufficient to show Le C M. Let
x E Le. There exists Y Ern T(x), and so

00 00
L y(n) x(n) = II Y 1100 L I x(n)I .
n~1 n~1

Here y(n) is the nth component of y, etc. This equation requires

(y(n)/II y 1100) x(n) = I x(n)[,

for every n. But y E Co , so that I ')I(n) 1/11 y 1100 < 1 for sufficiently large n. For
all such n we therefore have x(n) = 0, that is, x E M. Q.E.D.

It is interesting to note that M is the smallest subspace of 11 for which the
statement of Corollary 3 is true. This fact follows from the next theorem. The
proof, which depends on Lemma 2 and the following definition, is omitted.
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DEFINITION. xis an exposedpoint ofa convex set K C X (written x E exp(K»
if there is a hyperplane of support to K which touches K only at x. If X = y*
is a dual space, then x is a regularly exposed point of K C X (written
x E reg exp(K» if x E exp(K) and the associated hyperplane is defined by an
element of Y (qua element of Y**).

THEOREM 4. If (X, M, r) has property (SAIN) for all r C x* then
M:) exp(U(X». If X = y* and (X, M, F) has property (SAIN) for all r C Y,
then M:) reg exp(U(X».

We note that when X = [1, exp(U(X) = reg exp U(X) = {±em },

where em(n) = Dmn . Thus the subspace M of Corollary 3 is exactly
span{reg exp(U(ll))}'

We now indicate some further applications of Lemma 2. Suppose
X = LI{j1,) where the measure is such as to guarantee that X* = L"'OCtt).
Let M be a subspace of X which contains the simple functions. For example,
M could be the space of simple functions itself or the (generally larger) space
of LI{j1,) functions, each of which vanishes off a set of finite measure. For
a given fE L"')(tt) we consider the problem of (SAIN) for (X, M, {I}). We
distinguish two cases.

Case a. tt({t: If(t)[ = Ilflloo}) = O. In this case, LEi = {<9}, where
L = -Lspan{f}. Hence property (SAIN) is immediate from Corollary 1.

Case b. tt({t: If(t)1 = Ilflloo}) - tt(A) > O. Now we have

LEi = {x E LI(tt) : x vanishes a.e. [,.t] outside of A}.

Evidently, the simple functions which vanish outside A are dense in LEi, so the
conditions of Lemma 2 are met and property (SAIN) follows.

We summarize these observations in the next corollary, after remarking
that the case where M consists of functions each vanishing off a set of finite
measure was given a direct ad hoc proof in [1, Theorem 6.1].

COROLLARY 4. When X is an LI space whose dual is the corresponding L'X>
space, and M contains the simple functions, then (X, M, r) has property
(SAIN) for all one dimensional r C X*.

Clearly, the preceding argument can be used to obtain the conclusion of
Corollary 4 for other dense subsets M if we assume more structure in the
underlying measure space. Thus, if tt is a Borel measure on a locally
compact Hausdorff space, we can replace M by the space of continuous
functions with compact support. Similar examples will suggest themselves
to the interested reader.



140 HOLMES AND LAMBERT

Finally, we consider some applications of Theorem 2 and Corollary 2.
We let X = LP(fL) for 1 < p < 00 and some positive measure fL. As usual
x* = U(fL) where q = p/(p - 1). We denote the norm duality map on
LP(fL) by T p • The next lemma provides some pertinent information about T p •

LEMMA 4. (a) Tp is a homeomorphism from LP{fL) onto Lq{fL) and
T;/ = T q ;

(b) if x E LP{fL), then Tp(x) = I X(·)IP-l sgn x(')/II x IIP-2;
(c) ifMC np>l LP{fL) andifTiM)C Mforallp > 1, then TiM) = M

for all such p.

We are now going to consider several special examples of measures fL
and dense linear subspaces M. Our primary concern in these examples is to
decide whether or not the Deutsch-Morris necessary condition is sufficient
for (X, M, span{Yl ,... , Yn}) to have property (SAIN). Theorem 2 allows
us to consider instead the equivalent question of whether or not Tp(M) is
linear in X*.

First let fL be arbitrary and let M consist of either the simple functions or
the functions vanishing off a set of finite measure. Then clearly Lemma 4
(parts (b) and (c)) shows that TiM) = M. (A prooffrom basic principles of
the sufficiency when M consists of the functions vanishing off sets of finite
measure was given in [1, Theorem 5.1].) If fL is also assumed finite and we
take M = LOO(fL), then the same argument shows TiM) = M. Finally, if fL
is a finite regular Borel measure and M consists of the bounded continuous
functions, the continuous functions which vanish at infinity, or the continuous
functions with compact support, then once again we have TiM) = M.
Thus in all these cases the Deutsch-Morris necessary condition is equivalent
to property (SAIN).

Next we continue with fL as in the preceding example and require that
p * 2. Weare going to see that if M consists of any of the standard spaces
of smooth functions, then M is too "sparse" for Tp(M) to be linear. Thus it
will follow from Theorem 2 that when M is one of the indicated spaces of
smooth functions there will exist Yl ,... , Yn each of which attains its norm
(uniquely) on M but for which (LP{fL), M, span{Yl ,... , Yn}) does not have prop­
erty (SAIN). In fact, such a triple will have property (SAIN) exactly when
span{YI ,... , Yn} C TiM). In the particular case where fL is Lebesgue measure
on some interval and M is the space of polynomials, the set TiM) contains
no two-dimensional subspaces; hence for (X, M, r) to have property (SAIN)
it is necessary that dim r = 1. We may contrast this observation with the
following corollary to Theorem 1, which shows that, given X and M, it is
generally to be expected that (X, M, r) will have property (SAIN) for some
one-dimensional subspaces r.
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COROLLARY 5. If X is a normed linear space and M a dense convex subset
of X which contains an exposed point of U(X), then there exists yE x* such
that (X, M, span{y}) has property (SAIN).

In the next two examples we let fL be Lebesgue measure on [0, 1], and for
o < a ~ 1, we write Lip(a) for the space of functions satisfying a Lipschitz
condition with exponent a.

EXAMPLE 1. Let 1 < p < 2, 0 < a ~ 1, x(t) = t", and y(t) = 1 for
o ~ t ~ 1. We use Lemma 4(a) to solve the equation Tix) + T v( y) = Tiz)
for z. It results that

z(t) = B(l + At"(P-1l)1/IP-1),

where A and B are positive constants. Applying the mean-value theorem to
the difference z(t) - z(O), we obtain

t-"(z(t) - z(O)) = AB"(at1-")(1 + Ar"(P-l))l2-P)/(P-1l r"V-,,-l

?: Ct1-"/rl+"-"P > Ct"p-2".

Here C is a positive constant and 0 < r < I. Since 2 > P this term is
unbounded as t -+ 0+. That is, x, y E Lip(a) but Tp(x) + T p( y) 1= TiLip(a)),
hence this latter set is not linear. We note that when a = 1, the example also
shows that T1J(Ck) is not linear for 1 ~ k ~ 00, nor is T1J ({polynomials}).

EXAMPLE 2. Let 2 < p < 00, 0 < IX ~ 1, x(t) = 1 + I" and y(t) = "\,
a positive constant to be determined later. As before we compute z from the
equation T1J(x) - Tiy) = Tiz), and find

z(t) = B(A(l + t,,)1>-1 - ,.\)1(1>-1),

where A and B are positive constants. We choose,.\ so that z(O) = O. Now

t-"z(t) = B([A(l + t")1'-1 - A]/t"(1'-1})1!(1J-1),

so by L'Hospital's rule,

lim t-"z(t) = lim Ct,,-l-"1J+"+l = lim Ct2"-"1',
1->0+ 1->0+ 1->0+

where C is a positive constant. As 2 < p, this last exponent is negative so
that z 1= Lip(a). Now the remarks made at the end of example 1 apply.

We might finally remark that both the above examples can be considerably
generalized. For example, we may replace fL by any finite positive regular
Borel measure, since this only changes the values Tix) by a positive constant.
We may also replace [0, 1] by a metric space (Q, d), provided there is a cluster
point to E Q. If so, we replace t" in the preceding examples by min(l, d(t, toY».
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Note added in proof (January 11, 1973). Since this paper was submitted, a research
announcement has appeared in the Russian literature [Y. Shmatkov, On simultaneous
approximation and interpolation in Banach spaces, Dokl. Akad. Nauk Armyanskoi SSR
53 (1971), 65-70), which to some extent overlaps Part I of the present paper and also the
McLaughlin-Zaretzki paper [7). In particular, a result equivalent to our Theorem 3 is
announced.
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